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Abstract 

 

Practical Applications of Modular Arithmetic to Public Key 

Cryptography 

by  

Emmanuel Obaro Ohwadua 

 

The Greek word for secret codes – cryptography refers to the science of 

encrypting and decrypting information by using mathematics to conceal the secret text – 

better refers to as the plaintext.  Only the parties who know the pattern or are capable of 

breaking the code can discover the true contents of the coded text.  A coded text is 

known as the ciphertext and the encryption algorithm or mathematical system used in 

enciphering the plaintext is known as the cipher.  As privacy became more and more of 

a necessity in the digital age, partly due to the challenge to protect sensitive data on the 

Web and many other applications like it, the cipher algorithms became increasingly 

complex in order to counter the activities of cybercriminals sprawling on the internet.  

This complexity was obtained through the applications of advanced mathematical 

techniques such as discrete logarithms and large integer factorisation problems which is 

the subject of this research project.  
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We commenced this research project by giving a brief introduction to the science 

of cryptography in chapter 1. We equally elaborated on objectives, scope and methods 

of our research. In chapter 2, we dealt with the review of related mathematical topics in 

number theory such as groups and modular arithmetic that are relevant in the 

cryptographic algorithms such as RSA, Diffie-Hellman, Elgamal and DSA which we 

covered in chapter 4. Our chapter 3 focused on the literature review of the various 

cryptosystems mentioned in the foregoing in addition to elliptic curves and quantum 

cryptography. In each cryptographic algorithms discussed in chapter 4, we gave 

elaborate description of the encryption and decryption algorithms as the case may be, 

and the key generation techniques were illustrated with elaborate examples by applying 

the knowledge of the mathematical concepts discussed in chapter 2. 

We concluded this research work by recommending areas for further research 

work for readers interested in elliptic curve and quantum cryptography. 

 

 

 

 

 



 

 

CHAPTER 1 

INTRODUCTION 

 

 Number theory where modular arithmetic is “born” may be one of the “purest” branches of 

mathematics, but it has turned out to be one of the most useful when it comes to cryptography – 

an area of study that has attracted intensive research from the 1970s that is now being applied 

worldwide. Cryptography has a long and fascinating history.  Cryptography is the study of 

mathematical techniques that is used to protect information in digital media either stored or 

transmitted, from unauthorized access that would prevent and detect cheating and other 

malicious activities (1).  

Cryptography can be traced from its initial and limited use by the Egyptians some 4000 

years ago, to the twentieth century where it played a crucial role in the outcome of both world 

wars (2). The predominant practitioners of the art were those associated with the military, the 

diplomatic service and government in general. Cryptography was used as a tool to protect 

national secrets and strategies. However, the proliferation of computers and communications 

systems in the 1960s brought with it a demand from the private sector for means to protect 

information in digital form and to provide security services. Over the years, various standards 

and infrastructures involving cryptography are being put in place. Security products are being 

developed to address the security needs of an information intensive society. The subject of this 
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research project is to discuss the significant role of modular arithmetic in shaping major 

developments in modern cryptography. 

 

1.1 Information security and cryptography 

The concept of information will be taken to be an understood quantity. To introduce 

cryptography, an understanding of issues related to information security in general is necessary. 

Information security manifests itself in many ways according to the situation and requirement. 

Regardless of who is involved, to one degree or another, all parties to a transaction must have 

confidence that certain objectives associated with information security have been met. The 

overall objective may be plausibly described as the secrecy of the information either stored or 

transmitted so that only authorised users or persons can have access to the information while 

unauthorised users or persons are denied access. Over the centuries, an elaborate set of 

protocols and mechanisms has been created to deal with information security issues when the 

information is conveyed by physical documents (3). Often the objectives of information security 

cannot solely be achieved through mathematical algorithms and protocols alone, but require 

procedural techniques and abidance of laws to achieve the desired result. For example, privacy 

of letters is provided by sealed envelopes delivered by an accepted mail service. The physical 

security of the envelope is, for practical necessity, limited and so laws are enacted which make 

it a criminal offense to open mail for which one is not authorized. It is sometimes the case that 

security is achieved not through the information itself but through the physical document 
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recording it. For example, paper currency requires special inks and material to prevent 

counterfeiting. 

One of the fundamental tools used in information security is the signature. It is a building 

block for many other services such as identification and witnessing. Having learned the basics 

in writing, an individual is taught how to produce a handwritten signature for the purpose of 

identification. At contract age, the signature evolves to take on a very integral part of the 

person’s identity. This signature is intended to be unique to the individual and serve as a means 

to identify, authorize, and validate. With electronic information the concept of a signature needs 

to be redressed; it cannot simply be something unique to the signer and independent of the 

information signed. Electronic replication of it is so simple that appending a signature to a 

document not signed by the originator of the signature is almost a triviality. Analogues of the 

“paper protocols” currently in use are required. Hopefully these new electronic based protocols 

are at least as good as those they replace. There is a unique opportunity for society to introduce 

new and more efficient ways of ensuring information security. Much can be learned from the 

evolution of the paper based system, mimicking those aspects which have served us well and 

removing the inefficiencies. Achieving information security in an electronic society requires a 

vast array of technical and legal skills. There is, however, no guarantee that all of the 

information security objectives deemed necessary can be adequately met. The technical means 

is nonetheless provided through cryptography. 

Cryptography, over the ages, has been an art practised by many who have devised ad hoc 

techniques to meet some of the information security requirements (4). The last twenty-five years 

have been a period of transition as the discipline moved from an art to a science (5). Before the 
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advent of modern cryptography, modular arithmetic could lay claim to being one of the purest – 

most application-free areas of mathematics. However, with the advent of modern cryptography, 

applications of modular arithmetic and similar applications in polynomial fields and elliptic curves 

renewed interest on a number of mathematical fronts (6). In the coming chapters, we shall give 

a lucid discussion on the application of modular arithmetic to cryptography, while interested 

readers on other mathematical applications in polynomial fields and elliptic curves can consult 

advance text in cryptography. 

 

1.2 Cryptographic Keys 

Cryptographic keys are central to cryptographic operations. Many cryptographic schemes 

consist of pairs of operations, such as encryption and decryption, or signing and verification. In 

cryptography, encryption is the process of transforming information (referred to as plaintext) 

using an algorithm (called cipher) to make it unreadable to anyone except those possessing 

special knowledge, usually referred to as a key (7). In many contexts as we shall see below, the 

word encryption also implicitly refers to the reverse process, decryption (e.g. “key for encryption” 

can typically also perform decryption), to make the encrypted information readable again (i.e. to 

make it unencrypted). A key is a piece of variable data that is fed as input into a cryptographic 

algorithm to perform one such operation. In a well-designed cryptographic scheme, the security 

of the scheme depends only on the security of the keys used.  

Cryptographic keys can be classified based on their usage within a cryptographic scheme, 

as Symmetric Keys or Asymmetric Keys. A symmetric key is a single key that is used for both 
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operations in a cryptographic scheme (for example, to both encrypt and to decrypt your data). 

Usually, the security of the scheme depends on ensuring that the key is only known to the 

authorized participants. Asymmetric keys, on the other hand, are used in cryptographic 

schemes where different keys are needed for each operation. Common examples of such 

schemes are those using public/private key pairs, where the security of the scheme depends on 

ensuring that the private key is only known to one party. For example, public/private key 

encryption systems use two keys, a public key that anyone can use to encrypt data and a 

private key that only the authorized recipient possesses and that can be used to decrypt the 

data. Cryptographic keys shall be discussed in detail in subsequent chapters. 

 

1.3 An Overview of Modular Arithmetic 

Modular arithmetic is a branch of Number Theory that is concerned with the arithmetic of 

congruences, sometimes known informally as "clock arithmetic" (8). In modular arithmetic, 

numbers "wrap around" upon reaching a given fixed quantity, which is known as the modulus 

(which would be 12 in the case of hours on a clock, or 60 in the case of minutes or seconds on 

a clock). For example, a familiar use of modular arithmetic is its use in the 12-hour clock, in 

which the day is divided into two 12 hour periods. If the time is 8:00 now, then 8 hours later it 

will be 4:00. Usual addition would suggest that the later time should be 8 + 8 = 16, but this is not 

the answer because clock time "wraps around" every 12 hours; there is no "16 o'clock". 

Likewise, if the clock starts at 12:00 (noon) and 20 hours elapse, then the time will be 8:00 the 

next day, rather than 32:00. Since the hour number starts over when it reaches 12, this is 

arithmetic modulo 12. It is this “wrap around” property of the modular arithmetic that has given it 
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the enviable attention in the area of cryptographic research which is the subject of this research 

project. 

 

1.4 Objectives 

 Our goal is to demonstrate the applicability of Modular Arithmetic to Public Key 

Cryptosystems in the computation of cryptographic keys used for securing information 

and for digital signature scheme.  

 

1.5 Motivation 

We are motivated by the increase in research activities in this field and 

developments that have taken place in the last 25 years. It is therefore necessary to 

inform wherever possible would-be mathematicians or students of mathematics of this 

important area of research and the impact it has made in the security of information 

either stored or transmitted in the digital age. 

 

1.6 Methods of Research 

Review of related literatures and the computation of public and private key pairs for some 

selected public key cryptosystems using modular arithmetic. 
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1.7 Scope of Research 

Our scope shall include treatment of background subject – Groups and its properties; 

discussion of Modular Arithmetic, Modular Exponentiation and Euclidean Algorithms. We shall 

give an overview of Cryptography, followed by an introduction to Public Key Cryptography/ 

Cryptosystems. This shall be followed by the computation of private and public key pairs of 

some selected public key cryptosystems such as RSA, Diffie-Hellman and Elgamal signature 

scheme.  

 

1.8 Chapter Summary 

This chapter is essentially an introduction to the research topic with a peep into 

cryptography – how it all started, some key terminologies explained and an overview of modular 

arithmetic. We equally elaborated our research objective, methods of research and finally, 

motivation and scope of our research. The next chapter shall be devoted to the treatment of 

relevant areas in Number Theory – groups and modular arithmetic and their properties required 

for public-key cryptosystems. 
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CHAPTER 2 

MODULAR ARITHMETIC 

 

The mathematical basis for the algorithms used in public key cryptosystems (RSA, Diffie–

Hellman, Elgamal, elliptic curves, etc.) relies on some moderately deep concepts and results 

from number theory which is covered comprehensively in any advanced book on Number 

Theory, however interested readers can consult (8). Underlying the deep results in number 

theory, however, are some fundamentals that are almost, but perhaps not quite, obvious. Our 

purpose in this chapter is to present those fundamental parts of the theory of numbers 

necessary for an understanding of the computations involved in generating cryptographic keys 

in selected public key cryptosystem such as RSA, Diffie-Hellman, Elgamal and Digital signature 

scheme, while advanced number theory necessary for elliptic curves etc. shall not be covered . 

In our discussion in this chapter, most related elementary theorems shall be stated without 

proof, but examples shall be given whenever necessary for a proper understanding. We shall 

begin our discussion with a look at the ordinary integers, though elementary at the level of this 

research work, however central to any work in number theory is the nature of arithmetic 

(addition, multiplication, and the like) modulo prime numbers. 
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2.1 Overview of Group Theory 

We'll commence our discussion by examining a question of the form: What is the 

solution of the equation (9): 

 4x = 3       2.1.1 

The answer depends on what values we allow x to be. If we are doing all our 

arithmetic using the integers then there is no solution – there is no integer that gives 3 

upon being multiplied by 4. On the other hand if we are doing our arithmetic in ℤ/5 

(integers mod 5) then x = 2 is a solution. If we are using the more usual rational number 

system ℚ, then x = ¾ is a solution. 

We can gain insight into all such questions by considering the general equation 

      ɑ • x = b        2.1.2  

and then bringing up the question of solutions. Well, what values are ɑ and b? To what 

class of objects is x allowed to belong? What is the operation symbolized by the dot (•)? 

Group theory is concerned with systems in which (2.1.2) always has a unique solution. 

The theory does not concern itself with what ɑ and b actually are nor with what the 

operation symbolized by “•” actually is. Group theory requires only that a mathematical 

system obey a few simple rules. The theory then seeks to find out properties common to 

all systems that obey these few rules. 
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The axioms (basic rules) for a group are: 

1. Closure: If ɑ and b are in the group then ɑ • b is also in the group. 

2. Associativity: If ɑ, b and c are in the group then (ɑ • b) • c = ɑ • (b • c). 

3. Identity: There is an element e of the group such that for any element ɑ of 

the group, ɑ • e = e • ɑ = ɑ. 

4. Inverse: For any element ɑ of the group there is an element ɑ-1 such that 

            ɑ • ɑ-1 = e and ɑ-1 • ɑ = e  

Any mathematical system that obeys those four rules is a group. The study of systems 

that obey these four rules is the basis of GROUP THEORY. 

 

2.1.1  Cyclic Groups and Subgroups 

Let's start with the number 1. We'll allow ourselves to add or subtract the number 1 

to get to new numbers. So, to get to 13 simply add 1 12 times. To get to -42 simply 

subtract 1 43 times. The fact that the integers can be "built" by adding and subtracting 1 

means that the additive group of integers is a cyclic group (8). 

Thus, groups that can be generated in their entirety from one member are called 

cyclic groups. For infinite groups, we have to clarify what we mean by "generated from." 

For example in the additive group of Integers starting with 1 and adding it over and over 

to itself will never get a negative number nor the identity zero. Hence for a cyclic group 
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we have the definition that all the elements may be generated from a single element 

together with its inverse. For finite cyclic groups the addition of "together with its 

inverse" is not needed. 

If we select some element ɑ from a group G then we can consider the subset of all 

elements of G that are powers of ɑ. This subset forms a subgroup of G and is called the 

cyclic subgroup generated by ɑ (8). It forms a subgroup since it is 

1. It is closed – if you multiply powers of ɑ you end up with powers of ɑ. 

2. Has the identity – ɑ • ɑ-1 = ɑ0 = e 

3. Has inverses – the inverse of any product of ɑ's is a similar product of ɑ-1's.  

A few facts about cyclic groups and cyclic subgroups: 

1. Cyclic groups are Abelian (commutative group). 

2. All groups of prime order are cyclic. 

3. The subgroup of a group G generated by ɑ is the intersection of all subgroups 

of G containing ɑ. 

4. All infinite cyclic groups look like the additive group of integers. 

 

2.2 The Number System 

We have just seen in 1.3 two examples of modular arithmetic – mod 7 for days of 

the week, and mod 12 for hours of the clock. Another common example is mod 24 for 
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hours of in a day. We can actually do modular arithmetic using any number. When 

working modulo N (otherwise referred to as mod N), where N is some positive number, 

the numbers that we work with are the numbers from 0 to N – 1 inclusive. That is: 0, 1, 

2, 3, 4 .... , N – 1. 

In other words, instead of having numbers that go on and on forever, when 

working modulo N we only have N different numbers to work with. These are the only 

numbers available to us. For example: 

mod 5 uses the numbers 0, 1, 2, 3, and 4 only 

mod 12 uses the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 only 

mod 125 uses the numbers 0, 1, 2, 3, ... , 121, 122, 123, and 124 only 

When working mod N we often refer to the number N as the modulus. 

 

2.2.1  Modular Addition 

As we have just seen, when working modulo N we only have N different numbers 

to use: 0, 1, 2, 3, ... , N – 1. However, we can add two numbers modulo N and end up 

N? For example, if we are working in modulo 8, we would like to think that 3 + 5 = 8, but 

in mod 8 arithmetic, there is no such number as 8 – there are only numbers 0, 1, 2, 3, 4, 

5, 6 and 7. In other words, after we have reached 7, we start to count again from 0. We 

write this as follows: 
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3  +  5 = 0 mod 8. 

Also,  

3113 = 8 * 359 + 241.  

Since adding these eight multiples of 359 makes no difference, we can just 'forget about 

them' and thus 3113 is the same as 241 modulo 359. In other words: 

3113 ≡ 241 mod 359. 

Thus, when working modulo N, adding or subtracting multiples of N does not change a 

number. 

Similarly, for negative numbers modulo another number, we have for example, 

-17 mod 10 = -2 * 10 + 3 

Since subtracting these two multiples of 10 makes no difference, we can just 'forget 

about them' and thus -17 is the same as 3 modulo 10. In other words: 

-17 ≡ 3 mod 10. 

Another example is  -61 = -13 * 5 + 4.  

Thus,    –61 ≡ 4 mod 5 
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2.2.2  Divisibility 

Most of elementary number theory concerns the integers ℤ = {. . . , -4, -3, -2, -1, 0, 

1, 2, 3, 4 . . .}. Occasionally, we refer to the rational numbers ℚ = {ɑ/b : ɑ, b, ∈ ℤ}. If ɑ, b 

∈ ℤ, and b ≠ 0, then the integer part of ɑ/b, written [ɑ/b], also referred to as the floor of 

a/b and written ⌊ɑ/b⌋, is the integer c such that c ≤ ɑ/b < c + 1 (10). The ceiling of ɑ/b, 

written ⌈ɑ/b⌉, is the integer c such that c − 1 < ɑ/b ≤ c. 

We present these definitions to clarify the notation for negative values. The integer 

part function “truncates toward negative infinity” in that, for example, 

[(−5)/4] = [5/(−4)] = −2· 

An integer b is divisible by an integer ɑ if there exists an integer c such that b = ɑc. We 

say that ɑ is a divisor of b. 

Notes: 

 We write ɑ|b or ɑ⌿b, read “ɑ divides b” or “ɑ does not divide b”, according as b is or 

is not divisible by ɑ. 

 We note that ɑ|ɑ always holds. If ɑ|b and 0 < ɑ < b, then we say that ɑ is a proper 

divisor of b. 

 We note also that ɑ|0 holds for all integers ɑ but that 0|b never holds for any non-

zero integer b. The only instance in which ɑ|0 would make sense would be in the 

expression 0|0. By convention, we specifically exclude this relatively useless special 
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case because permitting it would require the addition of extra qualifications on a 

large number of theorems. 

Theorem 2.1. The following hold for all integers: 

1. If ɑ|b, then ɑ|bc for any integer c. 

2. If ɑ|b and b|c, then ɑ|c. 

3. If ɑ|b, then ɑc|bc for any integer c. 

4. If ɑ|b and b|ɑ, then ɑ = ±b. 

5. If ɑ|b and ɑ|c, then ɑ|(bx + cy) for any integers x and y. 

6. If ɑ|b, ɑ > 0, and b > 0, then ɑ ≤ b. 

One of the basic results of school arithmetic is that division of two integers yields a 

remainder that is smaller than the divisor. This is formalized in the following theorem. 

Theorem 2.2. (The division algorithm). If ɑ and b >0 are integers, then there exists a 

unique pair of integers q and r such that ɑ = bq + r, and 0 ≤ r < b; 

where the integer b can be regarded as the divisor, q as the quotient and r – the remainder (10). 

Example. Just as was the case above, in our usual decimal arithmetic we work in modulo 

10; now suppose a = 57, and b = 5, then 

   57 = 5 * 11 + 2, for 0≤2<5 

 Theorem 2.3. The gcd of integers ɑ and b, g = gcd(ɑ, b), is the least positive 

value of ɑx + by as x and y range over all integers (10).  
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 The greatest common divisor (usually abbreviated to gcd) of two numbers is the 

largest whole number that divides neatly into both numbers without leaving a remainder. 

In other words, the gcd of two numbers is the largest number that is a divisor of both 

numbers. Let's look at some examples: 

 the gcd of 14 and 21 is 7, since 7 is the largest divisor of both 14 and 21. 

 the gcd of 35 and 70 is 35, since 35 is the largest divisor of both 35 and 70. 

 the gcd of 1415 and 1500 is 5, since 5 is the largest divisor of both 1415 and 

1500. 

We normally abbreviate the writing of the gcd of two numbers using the following 

notation: gcd(1415,1500) = 5 

 

2.3 The Euclidean Algorithm 

The Euclidean algorithm, also called Euclid's algorithm, is an algorithm for finding 

the greatest common divisor of two numbers ɑ and b. It is the key to 'dividing' in 

modular arithmetic in a simple mathematical approach. The process can be explained in 

the following two theorems: 

Theorem 2.4. (The Euclidean algorithm). If, given integers ɑ and b, we make a 

repeated application of the division algorithm: 

b = r0, 



 

 

17 

 

ɑ = bq1 + r1, 0< r1 < b 

b = r1q2 + r2, 0< r2 < r1       (2.3.1) 

r1 = r2q3 + r3, 0< r3 < r2 

· · · 

then the process must terminate with r j+1 = 0 for some j and we have that r j = gcd(ɑ, b) 

(10).  

 Theorem 2.5. (The extended Euclidean algorithm). The values x0 and y0 such 

that gcd(ɑ, b) = ɑx0 + by0 can be obtained by eliminating the ri from Eq. (2.3) above (10). 

Example. Suppose ɑ = 261 and b = 48, we can apply the Euclidean algorithm to 

the pair as follows:  

261 = 48 × 5 + 21, 

 48 = 21 × 2 + 6, 

 21 = 6 × 3 + 3, 

  6 = 3 × 2 + 0, 

so the sequence q1, q2, q3, q4 is 5, 2, 3, 2. 
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2.3.1 Prime Numbers and Coprime 

We say that an integer p > 1 is a prime number if there are no positive divisors of p 

other than 1 and p. If p is not prime, then it is a composite number. 

 Theorem 2.6. The following hold (11): 

1. Every positive integer has a prime divisor. 

2. If, for a prime p, we have p|ɑb, then either p|ɑ or p|b. 

3. If, for a prime p, we have p| 𝑎𝑖𝑛
𝑖=1 , then p|ɑi for some i. 

For example, 19 is prime because 19 and 1 are the only numbers that divide into 19. 

Other examples: 

27 is prime 

18 is not prime because 2, 3, 6 and 9 are also divisors 

2 is prime no other even number is prime because 2 is a divisor  

We say that two numbers are coprime if their greatest common divisor is 1. In 

other words, two numbers are coprime if the only divisor that they have in common is 

the number 1. Or using gcd notation, two numbers X and Y are coprime if gcd(X,Y) = 1. 

For example,  

 42 and 55 are coprime, since no number other than 1 divides evenly into 

both 42 and 55. 
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 101 and 283 are coprime, since no number other than 1 divides evenly into 

both 101 and 283. 

 

2.3.2  Multiplicative Inverse 

The multiplicative inverse of a chosen number is the number that you multiply the 

chosen number by to get 1. In other words, the multiplicative inverse of 5 is 1/5. It can 

be written thus,  

57–1 = 1/57. 

 Now let us consider the multiplicative inverse of one number modulo another, 

sometimes referred to as a modular inverse (11). Once we start to compute modular 

inverses we will discover that they do not behave much like multiplicative inverses in the 

'real numbers'. For example: 

 many numbers (other than 0) do not have a multiplicative inverse modulo  

another number; 

 there exist numbers (other than 1) that are their own multiplicative inverse 

modulo another number. 

Let us consider the multiplicative inverse of 2 modulo 7; in other words, what numbers 

do you multiply by 2 to get the result 1 mod 7? One rather crude way is simply to try out 

all of the numbers mod 7 until we find out if there is an answer: 



 

 

20 

 

    2 * 0 ≡ 0 mod 7 

2 * 1 ≡ 2 mod 7 

2 * 2 ≡ 4 mod 7 

2 * 3 ≡ 6 mod 7 

2 * 4 ≡ 1 mod 7 

2 * 5 ≡ 3 mod 7 

2 * 6 ≡ 5 mod 7 

So 2–1 ≡ 4 mod 7 

Note:  A number has a multiplicative inverse modulo another number when the two 

numbers are coprime. 

For example,  

 gcd(2,7) = 1, which means 2 and 7 are coprime, and thus 2–1 mod 7 exists. 

 gcd(5,17) = 1, which means 5 and 17 are coprime, and thus 5–1 mod 17 exists. 

 gcd(6,10) = 2, which means 6 and 10 are not coprime, and thus 6–1 mod 10 does 

not exist. 

However, in order to find modular inverses to set up key pairs for public key cipher 

system, we need to work with modulus numbers that are very large. Thus, the idea of 

exhaustively trying out all the possible numbers less than our modulus is not a good 

one, as it might take a ridiculous amount of time to perform all the necessary 
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calculations. A simple and more efficient technique for finding the multiplicative inverse 

of one number modulo another number is to use Euclid algorithm. The Euclidean 

Algorithm is simply a recipe for calculating modular inverses pairs of numbers for which 

there does exist a multiplicative inverse of one modulo the other – thus, our numbers 

must be coprime (12). 

Suppose we wish to find the multiplicative inverse of A modulo N (where A and N 

are numbers and A is less than N). The Euclidean Algorithm stated in theorems 2.4 and 

2.5 can be broken down into three steps: 

Step 1: Repeated division 

The first step involves conducting a series of divisions that start with A and N, and end 

up with us obtaining remainder 1. 

Step 2: Backward substitution 

The second step involves using the divisions we conducted in Step 1 to produce an 

equation of the form: 

X * A + Y * N = 1 

where X and Y are numbers that will be determined by Step 1 equations. 

Step 3: Reduction modulo N 
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We now reduce modulo N by adding (or subtracting) multiples of N – this does not 

change a number modulo N, the Y * N bit of the above equation vanishes and we are 

left with 

X * A ≡ 1 mod N 

So X is the multiplicative inverse of A modulo N. 

Example: We illustrate the steps of the Euclidean Algorithm by using it to find 9–1 

mod 31. 

Step 1: Repeated division 

   31 = 3 * 9    +    4      2.2.1(a) 

       9 = 2 * 4 + 1     2.2.2(a) 

From 2.2.1(a) and 2.2.2(a), we have 

   4 = 31 – 3 * 9       2.2.1(b) 

and,    1 = 9 – 2 * 4       2.2.2(b) 

Step 2: Backward substitution 

The aim here is to take the 'B' equations that we established in Step 1 and use them in 

reverse order to produce an equation of the form: 

X * 9 + Y * 31 = 1 

where X and Y are numbers that will be determined by equations (2.3.1b) and (2.3.2b). 
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Thus,  

   1 = 9 – 2 * 4     by (2.3.2b) 

   1 = 9 – 2 * (31 – 3 * 9)   using (2.3.1b) 

   1 = 9 – 2 * 31 + 6 * 9 

   1 = (9 + 6 * 9) – 2 * 31 

or   1 = 7 * 9 – 2 * 31 

which takes the form of equation: 

   X * 9 – Y * 31 = 1 

where X = 7 and Y = -2 respectively.  

Step 3: Reduction modulo N 

In Step 2, we ended up with the expression: 

7 * 9 – 2 * 31 = 1 

Our goal is to obtain 9–1 mod 31. In other words we are looking for the number that you 

multiply 9 by to get 1 mod 31. 

From the above equation we see that 

7 * 9 – 2 * 31 ≡ 1 mod 31. 

Now recall that adding or subtracting multiples of 31 makes no difference to a number 

modulo 31. So, 
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7 * 9  ≡ 1 mod 31. 

Thus,     9–1 = 7 mod 31.  

The inverse of 9 modulo 31 is 7. We can easily check that we correct: 

7 * 9 = 63 ≡ 1 mod 31 

Further example: We shall illustrate the steps of the Euclidean Algorithm by using 

it to find 42–1 mod 47. 

Step 1: Repeated division 

   47 = 1 * 42    +     5      1a 

        42 = 8 * 5    +    2     2a 

             5 = 2 * 2 + 1    3a 

From 1a, 2a and 3a, we have respectively 

   5 = 47 – 1 * 42      1b 

   2 = 42 – 8 * 5       2b 

   1 = 5 – 2 * 2        3b 

Step 2: Backward substitution 

   1 = 5 – 2 * 2      by (3b) 

   1 = 5 – 2 * (42 – 8 * 5) 

   1 = 5 – 2 * 42 + 16 * 5 
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   1 = 17 * 5 – 2 * 42 

   1 = 17 * (47 – 1 * 42) – 2 * 42 

   1 = 17 * 47 – 17 * 42 – 2 * 42 

   1 = 17 * 47 – 19 * 42 

or,    -19 * 42 + 17 * 47 = 1 

where X = -19 and Y = 17. To check whether we are correct, we have 

   19 * 42 + 17 * 47 = -798 + 799 = 1  

We are correct! 

Step 3: Reduction modulo N 

   -19 * 42 + 17 * 47 = 1 mod 47 

or,    -19 * 42 ≡ 1 mod 47 

Now of course there is no such number as –19 mod 47, but we do know that 

 –19 ≡ –19 + 47 ≡ 28 mod 47.  

So we have, 

28 * 42 ≡ 1 mod 47. 

Thus,    42–1 ≡ 28 mod 47.  

We can easily check that we are correct: 

28 * 42 = 1176 ≡ 1 mod 47. 
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2.4 Modular Exponentiation 

Modular exponentiation is a type of exponentiation performed over a modulus. 

Modular exponentiation involves calculating the remainder when dividing by a positive 

integer m (called the modulus) a positive integer b (called the base) raised to the e-th 

power (e is called the exponent). In other words, suppose we have base b, exponent e, 

and modulus m, one wishes to calculate c such that (8): 

        c ≡ be mod m 

While small examples are easy enough to do, in general the type of calculation that is 

needed in public key cipher system such as RSA, for example, potentially involves very 

large numbers. This requires the multiplication of large numbers by itself many times 

which can be considered very inefficient. Hence, a better approach is developed to 

speed up the process. In this section we shall present one such process that would 

enable us to perform very large modular exponentiations fairly easily. 

 Example: We shall begin by examining problems involving small numbers such 

as: 57 mod 21 

Thus,  

57 = 5 * 5 * 5 * 5 * 5 * 5 * 5 

     = 78125 

      = 3720 * 21 + 5  
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      ≡ 5 mod 21 

 Example: Let us look at 411 mod 26. 

Thus,   

   411 = 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 

         = 4194304 

      = 161319 * 26 + 10 

      ≡ 10 mod 26 

Observe that this is a slightly tedious computation than the previous example. 

 Further example: Suppose we have 1322 mod 65.  

Then,  

   322 = 3 * 13 * 13 * 13 * 13 * ...* 13 * 13 (22-times) 

     = 3211838877954855105157369 

     = 49412905814690078540882 * 65 + 39 

     ≡ 39 mod 65 

Observe that the calculations necessary to get from the first line to the second line and 

again from the second line to the third line involve very large numbers despite that fact 

that we only started with the relatively small numbers 13 and 22.  
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The time and computer power required to perform this type of calculation 

increases dramatically as the numbers involved start to rise. Clearly a more efficient 

method of exponentiation is needed other than brute force multiplication of the type that 

we have just tried in these examples. The algorithm is called Repeated Squares. 

 

2.4.1 Repeated Squares Algorithm 

There are three steps involved in the Repeated Squares Algorithm. The Algorithm 

can be best explained by means of an example. For clarity, we shall use a slightly 

different notation for multiplication in our description. Thus we shall write (X)(Y) to mean 

X * Y or “X multiplied by Y”. 

Example: We shall consider our earlier example given above: 57 mod 21. 

Step 1: Write the exponent as a sum of powers of 2. 

We first write the exponent 7 in binary:   710 = 1112 

Recall that binary just defines a sum of powers of 2, so:  7 = 22 + 21 + 20 

Thus,    7 = 4 + 2 + 1 

We can now re-write the problem as: 

57 mod 21 ≡ 54+2+1 mod 21 

     ≡ (54)(52)(51) mod 21 
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Step 2: Construct a table of repeated squares. 

From Step 1, we see that if we calculate each of 54, 52 and 51 modulo 21, then we can 

multiply them together to get the solution to the problem. We thus construct this table of 

“repeated squares”. This is a faster process because in each case we use the previous 

calculation to perform the next one and then reduce modulo 21: 

 51 ≡ 5 mod 21 

52 = (5)2 = 25 ≡ 4 mod 21 

54 = (52)2 ≡ (4)2 ≡ 16 mod 21 

Observe that each line is the square of the previous line (reduced mod 21). 

Step 3: Combine the results of Steps 1 and 2. 

57 mod 21 ≡ (54)(52)(51) mod 21 

       ≡ (16)(4)(5) mod 21 

        ≡ 320 mod 21 

        ≡ 5 mod 21 

This agrees with our previous answer. 

Further example: Let us re-calculate our previous example, 1322 mod 65 with this 

approach to appreciate the difference. 

Step 1: Write the exponent as a sum of powers of 2. 
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We first write the exponent 22 in binary:   2210 = 101102 

Recall that binary just defines a sum of powers of 2, so:  22 = 24 + 22 + 21 

Thus,      22 = 16 + 4 + 2 

We can now re-write the question as: 

1322 mod 65 ≡ 1316+4+2 mod 65 

≡ (1316)(134)(132) mod 65 

Step 2: Construct a table of repeated squares. 

131 = 13 mod 65 

132 = (13)2 = 169 ≡ 39 mod 65 

134 = (132)2 ≡ (39)2 = 1521 ≡ 26 mod 65 

138 = (134)2 ≡ (26)2 = 676 ≡ 26 mod 65 

1316 = (138)2 ≡ (26)2 = 676 ≡ 26 mod 65 

Step 3: Combine the results of Steps 1 and 2. 

1322 mod 65 ≡ (1316)(134)(132) mod 65 

≡ (26)(26)(39) mod 65 

≡ 26364 mod 65 

≡ 39 mod 65 

which agrees with our previous answer. 
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2.5 Chapter Summary 

In this chapter, we covered extensively all relevant areas in modular arithmetic that 

is required to computer cryptographic keys in public key cipher system such as RSA, 

Diffie-Hellman, and Elgamal signature scheme. The topics include basic group theory, 

and introduction to modular arithmetic such as modular addition, subtraction and 

multiplication. Others include Euclidean Algorithm and Modular exponentiation. In 

chapter 3, we shall discuss Public Key cryptosystems with emphasis on RSA, Diffie-

Hellman and Elgamal. 

 

 

 

 

 

 

 

 



 

 

32 

 

CHAPTER 3 

PUBLIC KEY (ASYMMETRIC) CRYPTOGRAPHY 

 

Even though cryptography has existed for thousands of years, its development 

was slow and unyielding.  The need to communicate secretly had never been 

considerably threatened until the invention of computers and high-tech machines. As 

the need for privacy heightened, encryption techniques became further advanced. 

Encryption is the procedure of rendering a message into a concealed form so that it is 

decipherable exclusively by a particular recipient or recipients (13). The message in its 

original state is known as a plaintext (or cleartext); in its encrypted form, it is known as a 

ciphertext. Historically, the aim of encryption has been to enable two parties to 

exchange messages confidentially, even in the presence of an eavesdropper capable of 

intercepting most or all of their communications. The use of encryption has been 

confined chiefly to diplomatic and military circles in the past, but its scope in everyday 

life has broadened enormously in recent years. Thanks to the rise of the Internet. Active 

users of the Internet employ encryption on a regular basis. For instance, when 

accepting credit card information or processing other financial transactions on the 

internet, most web servers initiate encryption sessions with clients. In most browsers, 

the appearance of an icon representing a closed padlock on the bottom of the screen 
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indicates the use of encryption.  By clicking on this padlock, a user can learn detailed 

information about the encryption session. Encryption also plays an important role in 

most important industrial communications systems, such as networks used for banking 

transactions. It is equally being used extensively by individuals and institutions for 

securing stored information on a computer system or on transit such as encrypted email 

messages. 

 

3.1 Background of Cryptography 

Cryptography dates back as far as 400 BC, during the times of Julius Caesar and 

the Roman Empire.  To communicate between the Roman armies at different locations, 

Caesar used a simple substitution code involving the alphabet (Hebert) (3).  This type of 

code shifts the letters of the alphabet so that each letter must be substituted for another 

one.  This technique is easiest when one knows the number of shifts to the right or the 

left in the alphabet. 

 A typical Caesar cipher system with shift 5 to the right is displayed below: 

A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

V   W   X   Y   Z   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R    S   T   U   

 Find each letter from a plaintext on the top row and replace it with the letter 

directly below it.  This will produce a ciphertext.  For example, an encrypted code that 
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says, “Meet me in the library” will look like the following: HZZOHZDIOCZGDWMVMT.  

To decipher the code, look for each letter from the ciphertext on the bottom row and 

replace it with the letter directly above it.  The only concern with this technique is that it 

can easily be solved because there are only 25 other variations of the message.  One 

only needs to write out all 26 and find the one decrypted message that makes sense. 

 A more advanced kind of encryption technique is called the Vigenere Cipher (13).  

This cipher uses the same basic principles of substitution similar to Caesar’s method.  

In this method, there must be a key word to use.  Primarily, this is agreed on 

beforehand by both communicating parties.  For this example, the key word shall be 

“MILK” and the message shall be, “See you soon.”  We begin by writing the word “MILK” 

across the top of the message: 

M     I      L     K     M      I     L     K     M     I     

S     E     E     Y     O     U    S     O     O    N 

To encrypt this message, we must use a chart called the Vigenere table.  The rows and 

columns are labelled off by the letters of the alphabet.  It should look something like this: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 

C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 

F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 

G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 
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I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 

J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 

K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 

L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 

M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 

P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 

Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 

R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 

S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 

T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 

U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 

V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 

W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 

X Y Z A B C D E F G H I J K L M N O P Q R S T U V W 

Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 

Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 

 

Table 1: The Vigenere Square 

Using the two letters in the chart of the secret message and a key word, we can find the 

intersecting letter in the Vegenere chart.  Thus, examining the chart, “M” and “S” 

intersect at point “E.”  The encrypted message would look like the following: 

“EMPIACDYAV.”  The advantage to this technique is that it provides additional 

variations of decrypted messages.  Subsequently, an attacker will have a more 

strenuous time decoding the message without the key word. 

 The Caesar cipher and the Vigenere cipher are the simplest encryption 

techniques. Other great advancements in this science occurred especially during the 



 

 

36 

 

years of the World Wars.  During the 1930’s through the 1940’s, the Nazi Germans 

used an electronic ciphering system, known as Enigma. The Enigma system of Second 

World War was like a “combination lock with more than 1023 possible combinations” 

(14).  After the “breaking” of an earlier version of Enigma by Marian Rejewski in 1932, 

the Nazis strengthened their system and decided to change the combination daily, 

making it more difficult for Enigma to be broken (15).  However, a team of British 

cryptographers led by Alan Turing discovered a way to eliminate many of the incorrect 

combinations.  This discovery narrowed down the 1023 possibilities significantly so that 

only a handful remained. Other major symmetric ciphers that are being used today are 

Data Encryption Standard (DES) – earliest version which was developed in 1976, and 

Advanced Encryption Standard (AES) which came into existence in 2000 in a bid to 

replace DES because of inherent vulnerability discovered in the design in the 1990s.  

However, there is one major flaw in both of these ciphering methods – the 

distribution of the key.  How is it possible to distribute the key so that any attacker can 

not discover it?  This dilemma led to the discovery of the Diffie-Hellman key exchange in 

the 1970’s (16). This ingenious method incorporates mathematics so that a party could 

distribute the key to another party without the risk of an intruder receiving the 

information. 
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3.2 Public Key Cipher System 

The general subject matter of modern cryptography as we have mentioned above 

is communication over a problematic channel. The channel may be insecure in the 

sense that any communication may be overheard, or insecure in the sense that 

communications may be arbitrarily altered before reaching their destination, and, in 

addition, the participants in the communication may not be trustworthy. They may 

repudiate important warrants at a later time, thus assurances of various sorts would be 

valuable. Thus, public-key cryptography is the verification and securing of 

communications over channels that are not secure and cannot be assumed to transmit 

information reliably and between participants who do not necessarily trust one another. 

In traditional cryptography however, such as was available prior to the 1970’s, the 

encryption and decryption operations are performed with the same key. This means that 

the party encrypting the data and the party decrypting it need to share the same 

decryption key. Establishing a shared key between the parties is an interesting 

challenge. If two parties already share a secret key, they could easily distribute new 

keys to each other by encrypting them with prior keys. But if they don’t already share a 

secret key, how do they establish the first one? 

This line of thinking – in pre-Web terminology – prompted two Stanford University 

researchers, Whitfield Diffie and Martin Hellman, to write a landmark paper, “New 

Directions in Cryptography,” in 1976 (17). The paper suggested that perhaps encryption 
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and decryption could be done with a pair of different keys rather than with the same key. 

The decryption key would still have to be kept secret, but the encryption key could be 

made public without compromising the security of the decryption key. This concept was 

called public key cryptography because of the fact that the encryption key could be 

made known to anyone. 

Diffie and Hellman also introduced the concept of digital signatures (18). Parties 

who share a secret key can easily verify the data they have exchanged whether it has 

not been modified by performing an authentication operation using the key. Unlike for 

encryption and decryption using public key and private key respectively, in digital 

signatures, the private key is used to generate the signature i.e., for signing while the 

public key is used for verification of the signature by the receiving party. Digital 

signature has similar properties to handwritten signatures – any party can verify the 

signature provided they have the public key, but only one party with the private key can 

generate it. In fact, the assurances are stronger than for ordinary signatures, because 

the signature is dependent on the data itself, unlike ordinary signatures which can 

potentially be cut-and-pasted among different documents and yet still appear to be 

valid. 

Diffie and Hellman introduced a specific method based on number theory for 

establishing secret keys by parties who don’t previously share a secret. The method is 

called Diffie-Hellman key agreement (19). The security of the method is related to a 
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longstanding problem in number theory, discrete logarithms which we shall discuss in 

chapter 4. The pioneering paper by Diffie and Hellman (17) introduced a new approach 

to cryptography and, in effect, challenged cryptographers to come up with a 

cryptographic algorithm that met the requirements for public-key systems. One of the 

first of the responses to the challenge was developed in 1977 by Ron Rivest, Adi 

Shamir, and Len Adleman at MIT and first published in 1978 (20). The Rivest-Shamir-

Adleman (RSA) scheme based on integer factorization has since that time reigned 

supreme and is perhaps the most widely accepted and implemented general-purpose 

approach to public key encryption. 

Other forms of public key cryptosystems that have been developed since the 

1970’s are ElGamal and most recent research areas such as elliptic curve and 

Quantum cryptography. The ElGamal public key cryptosystem was created by Taher 

ElGamal (1985), like the Diffie–Hellman key exchange, it is based on the discrete 

logarithm problem. But, unlike Diffie–Hellman key exchange, it can be used for 

encryption. There is a form of the ElGamal algorithm that can equally be used for digital 

signature and is the base for the U.S. government’s Digital Signature Standard (DSS) in 

1984.  
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3.2.1 Overview of Elliptic Curve and Quantum Cryptography 

Elliptic curves (elliptic curve discrete logarithm problem) were first introduced into 

cryptography by Miller (1986) and Koblitz (1987) (21). In recent years they have gained 

widespread interest because of their shorter key size compared to systems such as 

RSA, their superior efficiency in certain situations, and the smaller bandwidth that they 

require. These advantages are becoming more compelling as time progresses because 

of the increased use of smaller and smaller mobile computing devices with associated 

bandwidth and computational constraints. 

Quantum cryptography on the other hand, is the name under which are commonly 

known those techniques that make use of the laws of quantum mechanics to prevent 

the unauthorized access to secret information. The most celebrated of such protocols, is 

quantum key distribution, undoubtedly the most successful quantum information 

processing protocol from the technological viewpoint. Quantum key distribution is a 

scheme that allows two remote parties to share a common secret random string of bits 

even in the presence of an adverse party who tries to eavesdrop. It solves the problem 

of secure distribution of private cryptographic keys by allowing the detection of any 

eavesdropping. Quantum key distribution is historically the first quantum information 

processing protocol. Some of the ideas behind it were implicitly suggested by Stephen 

Wiesner, who proposed quantum tokens which cannot be forged in his paper – 

“Conjugate Coding”, which unfortunately took more than ten years to be published (22). 
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Elliptic curve and Quantum cryptography are current areas of increasing research in 

modern cryptography. 

 

3.3 Chapter Summary 

This chapter covers a brief background of cryptography – from symmetric 

cryptography to asymmetric cryptography. In the symmetric cryptography we discussed 

major examples of cipher system such as Caesar cipher, Vegenere cipher and the 

Enigma machine used in the Second World War by the Germans. The major 

development of asymmetric cipher system in the 1970’s till date was discussed with 

emphasis on Diffie-Hellman, RSA and Elgamal cipher systems. Current developments 

in cryptography such as elliptic curve and quantum cryptography were also highlighted. 

In the next chapter, we shall be discussing the computation of public keys for selected 

public key cipher system using modular arithmetic that we treated in chapter 2. 
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CHAPTER 4 

ASYMMETRIC KEY GENERATION 

 

Public-key cryptography finds its strongest application when parties who have no 

prior relationship (and therefore no opportunity to establish shared secret keys) want to 

exchange sensitive data with each other. Anyone who wants to be a receiver needs to 

“publish” an encryption key, which is known as the public key, while at the same time 

generate a unique and secret corresponding decryption key known only to him and 

known as the private key. Thus anyone with the public key can encrypt a message but 

the message can only be decrypted by the owner or anyone with the knowledge of the 

private key. Because the encryption and decryption algorithms for asymmetric ciphers 

are considerably slower than those for symmetric ciphers, in practice the asymmetric 

ciphers are used to securely exchange a session key for a symmetric cipher to be used 

for the actual communication. That is, the only plaintext encrypted with the symmetric 

cipher is the key for a symmetric cipher, and then the faster-running symmetric cipher is 

used for encryption of the actual message.  

Throughout the 1980s, however, most of the applications that needed to protect 

data had centralized control. Banking networks and pay-TV systems are typical 

examples where secret keys could generally be pre-established by a central authority. 
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Applications that didn’t have centralized control – like e-mail – were meanwhile growing 

without much attention to security. Equally important was the fact that the mathematical 

operations in public-key cryptography required considerable computational resources 

relative to computer performance at the time. As a result, public-key cryptography was a 

slow sell through that first full decade. 

With the advent of the World Wide Web in the 1990s, however, the situation 

changed. Computer performance had by then advanced to the point that the time for the 

encryption and decryption operations was no longer an issue. Meanwhile, the “killer 

application” of online purchasing had exactly the characteristics that required public-key 

cryptography. The Web inherently didn’t have central control for security – any merchant 

could go online without any prior security relationships with anyone else. Thus, there 

was clearly a need to protect sensitive data – many consumers would not shop online if 

there were a risk that credit card numbers and order information might be intercepted by 

an eavesdropper. Public-key cryptography caught on rapidly as a result.  

The generation of session keys for messages to be exchanged securely between 

parties requires the application of mathematics – the modular arithmetic already 

discussed in chapter 2 will be the base for the key generation algorithms that we shall 

deal with in subsequent sections in this chapter. Meanwhile, for the purpose of this 

research work, we shall limit our implementation to three asymmetric cipher systems – 

RSA, Diffie-Hellman, and ElGamal algorithms.   
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4.1 RSA Public-key Algorithm 

The RSA public key encryption algorithm was the first practical implementation of 

public key encryption discovered and it remains perhaps the most widely used public 

key encryption algorithm today (23). RSA public-key algorithm depends on the difficulty 

of factoring large integers. There are four basic steps involved in setting up and using 

an RSA public and private key pair. 

Step 1: Choose two large primes 

Two prime numbers p and q are chosen by some means. 

Step 2: Compute the RSA modulus 

This step involves multiplying p and q together. The resulting number 

n = p * q 

is part of the public key. This number n will be the modulus that we use when we 

compute RSA encryptions and decryptions using modular arithmetic. 

Step 3: Choose the rest of the public key 

A number e is selected that is smaller than (p – 1) * (q – 1) and has the important 

property that 

e is coprime to (p – 1) * (q – 1). 
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Thus, the number e is greater than 1 and less than (p-1)(q-1), and must have the 

precise mathematical property that there must be no numbers that divide neatly into e 

and into (p-1)(q-1) except for i.e., gcd[e,(p-1)(q-1)] = 1. 

The two numbers n and e i.e., (n,e) pair together form the public key and can be freely 

published or distributed to anyone who you want to be able to send encrypted 

messages to you. 

Step 4: Compute the private key d from p, q and e 

The private key d is the inverse of e modulo (p – 1) * (q – 1). In other words: 

d ≡ e–1 mod (p – 1) * (q – 1). 

This number d is calculated from e and (p – 1) * (q – 1) using the Euclidean Algorithm 

(2.3). The private key d must be kept secret by the holder of the key pair and nobody 

else should learn its value. Thus, an RSA key pair, has (n,e) as the public key and d as 

the private key. 

 Let us consider an example of the setup of an RSA key pair. 

 Example: We shall choose two small prime numbers for ease of computation, p = 

29 and q = 41.  

Step 1: Our two primes are p = 29 and q = 41 

Step 2: Compute the RSA modulus 

This step involves multiplying 29 and 41 together. The resulting number 
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n = 29 * 41 = 1189 

is part of the public key. 

Step 3: Choose the rest of the public key 

A number e is chosen that is greater than 1 and smaller than (29 – 1) * (41 – 1) = 28 * 

40 = 1120 and has the important property that e is coprime to 1120 i.e.  

gcd(e,1120) = 1. 

Let us try and find one that is suitable. 

Consider e = 7, is not a valid value for e because 7 and 1120 are not coprime (7 is a 

common divisor). 

Consider e = 8, is not a valid value for e because 8 and 1120 are not coprime (2 is a 

common divisor). 

Consider e = 9, no number other than 1 divides evenly into both 9 and 1120. Thus 9 is 

coprime to 1120 i.e. 

   gcd(9,1120) = 1, 

 so we may use e = 9.  

Thus, the two numbers 1189 and 9 i.e. (1189,9) together form the public key and can be 

freely distributed to anyone who you want to be able to send encrypted messages to 

you. 
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Step 4: Compute the private key 

The private key d is the inverse of 9 mod 1120. In other words: 

d ≡ 9–1 mod 1120. 

This number d is calculated from 9 and 1120 using the Euclidean Algorithm (2.3): 

Step I: 

1120 = 124(9) + 4   ⇒  4 = 1120 – 124(9) 

9 = 2(4) + 1    ⇒  1 = 9 – 2(4) 

Step II: Backward substitution 

1 = 9 – 2(4) 

1 = 9 – 2(1120 – 124(9)) 

1 = 9 – 2(1120) + 248(9) 

1 = 249(9) – 2(1120) 

Step III: Reduce this mod 1120 to get 

1 ≡ 249(9) mod 1120 

So   9–1 ≡ 249 mod 1120 

Thus our private key is d = 249. The private key 249 must be kept secret by the holder 

of the key pair and nobody else should know its value. 
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4.1.1  RSA Encryption and Decryption 

RSA Encryption: 

To encrypt a plaintext M using an RSA public key, we simply represent the 

plaintext as a number between 0 and N – 1 and then compute the ciphertext C as: 

C = Me mod N. 

RSA Decryption: 

 To decrypt a ciphertext C using an RSA public key we simply compute the 

plaintext M as: 

M = Cd mod N. 

Note that both RSA encryption and RSA decryption involve modular exponentiation 

(2.4). 

 Example: Let  us consider an example of RSA encryption and decryption using 

the key pair established in our previous example where public key is given as (1189, 9) 

and private key as 249. 

a) Encryption: 

Suppose someone wants to encrypt the plaintext M = 19. We thus have to calculate the 

ciphertext 

C ≡ 199 mod 1189. 



 

 

49 

 

This is most efficiently calculated using the Repeated Squares Algorithm (2.4.1): 

Step I: 

C ≡ 198+1 mod 1189 

C ≡ (198)(191) mod 1189 

Step II: 

191 ≡ 19 mod 1189 

192 ≡ 192 ≡ 361 mod 1189 

194 = (192)2 ≡ (361)2 = 130321 ≡ 720 mod 1189 

198 = (194)2 ≡ (720)2 = 518400 ≡ 1185 mod 1189 

Step III: 

C ≡ (198)(191) mod 1189 

  ≡ (1185)(19) mod 1189 

  ≡ 22515 mod 1189 

    ≡ 1113 mod 1189 

So the ciphertext C is 1113. 

b) Decryption 

Suppose we now receive this ciphertext C = 1113. To decrypt it we have to calculate: 

M ≡ 1113249 mod 1189 
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This is most efficiently calculated using the Repeated Squares Algorithm (2.4.1): 

Step I: 

M ≡ 1113249 mod 1189 

M ≡ 1113128+64+32+16+8+1 mod 1189 

M ≡ (1113128)(111364)(111332)(111316)(11138)(11131) mod 1189 

Step II: 

11131 ≡ 1113 mod 1189 

11132 ≡ 1238769 ≡ 1020 mod 1189 

11134 = (11132)2 ≡ (1020)2 = 1040400 ≡ 25 mod 1189 

11138 = (11134)2 ≡ (25)2 ≡ 625 mod 1189 

111316 = (11138)2 ≡ (625)2 = 390625 ≡ 633 mod 1189 

111332 = (111316)2 ≡ (633)2 = 400689 ≡ 1185 mod 1189 

111364 = (111332)2 ≡ (1185)2 = 1404225 ≡ 16 mod 1189 

1113128 = (111364)2 ≡ (16)2 ≡ 256 mod 1189 

Step III: 

M ≡ (1113128)(111364)(111332)(111316)(11138)(11131) mod 1189 

    ≡ (256)(16)(1185)(633)(625)(1113) mod 1189 

    ≡ 2137259174400000 mod 1189 
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    ≡ 19 mod 1189 

So the plaintext M is 19. 

This corresponds with what we originally encrypted and so the decryption has been 

successful. 

 

4.2 Diffie-Hellman Key Exchange Algorithm 

Diffie–Hellman key exchange (D–H) is a cryptographic protocol that allows two 

parties that have no prior knowledge of each other to jointly establish a shared secret 

key over an insecure communications channel (24). This key can then be used to 

encrypt subsequent communications using a symmetric key cipher. The simplest, and 

original, implementation of the protocol uses the multiplicative group of integers modulo 

p, where p is prime and g is primitive root mod p. In modular arithmetic, a primitive root 

modulo n is any number g with the property that any number coprime to n is congruent 

to a power of g (mod n). That is, if g is a primitive root (mod n), then for every integer ɑ 

that has gcd(ɑ, n) = 1, there is an integer k such that gk ≡ ɑ (mod n), where k is called 

the index of ɑ. That is, g is a generator of the multiplicative group of integers modulo n. 

Thus in D-H set up, the system parameters required are a prime p and a generator 

g known already to both parties. Suppose we have the two parties as A and B, the 

algorithm is illustrated in the following steps: 
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Step 1: Computation of public key 

 Party A selects a secret key ɑ and computes a public key: 

   y = gɑ mod p 

Similarly, party B selects a secret key b and computes a public key: 

   y = gb mod p 

Step 2: Key Exchange 

Party A sends gɑ to B while party B sends gb to A.  

Thus both parties A and B can now compute  

  (gɑ)b = (gb)ɑ = gɑb mod p 

gɑb mod p is now the shared secret between both parties. 

 Example: Suppose we have a generator g = 23 with a prime p = 517. 

Step 1: Computation of public key 

Suppose A chooses a secret key ɑ = 8, then 

  238 ≡ 234+2+1 mod 517 

So,   231 ≡ 23 mod 517 

  232 ≡ 529 mod 517 = 12 mod 517 

  234 = (232)2 = 122 ≡ 144 mod 517 

  238 = ((232)2)2 ≡ 1442 mod 517  
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      ≡ 20736 mod 517  

      ≡ 56 mod 517 

So 56 is a public key. 

Similarly, B computes 2314 mod 517: 

  2314 = 238+4+2 = (238)(234)(232) mod 517 

Thus,   232 = 12 mod 517 

  234 = (232)2 = 122 ≡ 144 mod 517 

  238 = (234)2 = 1442 ≡ 20736 mod 517 = 56 mod 517 

and   2314 mod 517 = (56)(144)(12) mod 517 = 96768 mod 517 

                = 89 mod 517. 

So, 89 is a public key. 

Step 2: Key exchange 

Party A sends 56 to B while party B sends 89 to A. 

A now computes  

  898 mod 517 = 894+2+1 mod 517  

Thus,   891 ≡ 89 mod 517 

  892 ≡ 7921 mod 517 =166 mod 517 

  894 = 1662 ≡ 27556 mod 517 = 155 mod 517 
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  898 = 1552 ≡ 24025 mod 517 = 243 mod 517 

So,   898 mod 517 = 243 mod 517 

Similarly, B computes 

  5614 = 568+4+2 ≡ (568)(564)(562) mod 517 

where  561 ≡ 56 mod 517 

  562 ≡ 3136 mod 517 = 34 mod 517 

  564 = 342 ≡ 1156 mod 517 = 122 mod 517 

  568 = 1222 ≡ 14884 mod 517 = 408 mod 517 

Thus,   (568)(564)(562) mod 517 = (408)(122)(34) mod 517 

            = 1692384 mod 517 

            = 243 mod 517 

or  5614 mod 517 = 243 mod 517 

which corresponds to our earlier result for A, thus both A and B obtains 243 as their 

secret key. Both A and B can now exchange information using this secret key as their 

session key with symmetric cipher. 
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4.3 ElGamal Public Key System 

The ElGamal cipher system is a public-key cryptosystem based on the discrete 

logarithm problem. It consists of both encryption and signature algorithms. The 

encryption algorithm is similar in nature to the Diffie-Hellman key agreement protocol 

discussed above. It was described by Taher Elgamal in 1985.  ElGamal encryption 

consists of three components – the key generator, the encryption algorithm, and the 

decryption algorithm (25). The system parameters consist of a prime p and an integer g, 

whose powers modulo p generate a large number of elements, as in Diffie-Hellman. 

Setting up ElGamal 

Let p be a large prime and select a special number g such that g must be a primitive 

element modulo p (2.1.1). Next choose a private key x, where 1 ≤ x ≤ p-2. Then 

compute public key y from x, p and g as 

   y = gx mod p. 

ElGamal encryption 

The first task is to represent the plaintext as a series of numbers modulo p.  Then  

1. Generate a random number k, such that 1 ≤ k ≤ p-2. 

2. Compute two values C1 and C2, where  

C1 = gk mod p and C2 = Myk mod p 
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3. Send the ciphertext C, which consists of the two separate values C1 and C2 to 

the recipient. 

ElGamal decryption 

1. To decrypt, the recipient uses its private key x to transform C1 into something 

more useful: 

   C1
x = (gk)x mod p 

          =  (gx)k = (y)k = yk mod p  (1) 

2. Divide C2 by (1)  to get M as follows: 

C2/yk = (Myk)/yk = M mod p  

which gives the plaintext M. 

 Example: Suppose we wish to send the message, M = 10 to B, and suppose B 

has chosen a secret key x = 6, with primitive element g = 11 and p =23.  

This means that B’s public key is 

   y = gx mod p = 116 mod 23 

     = (113)2 mod 23 ≡ 9 mod 23 = 9 

Thus, 9 is the public key, and 6 is the private key. 

To encrypt M = 10, we choose a random value, k = 3; 1 ≤ k ≤ p-2. 

Compute  C1 = gk mod p = 113 mod 23 = 20 
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and    C2 = Myk mod p = 10(93) mod 23 

          = 10(16) mod 23 = 160 mod 23 = 22 

Thus, ciphertext C = (C1, C2) = (20, 22) 

To decrypt C = (20, 22) 

1. Compute  C1
x = 206 = 16 mod 23 

2. Compute  C2/yk = 22/16 = 22(16-1) mod 23 = 22(13) mod 23 

         = 286 mod 23 = 10 

Hence, plaintext M = 10. 

    

4.4 Digital Signature Algorithm (DSA) 

Digital Signature Standard is a United States Federal Information Processing 

Standards Publications (FIPS PUBS) issued by the National Institute of Standards and 

Technology (NIST). The Standard is based on ElGamal public-key system and it 

specifies a Digital Signature Algorithm (DSA) appropriate for applications requiring a 

digital rather than written signature. The DSA digital signature is a pair of large numbers 

represented in a computer as strings of binary digits (26). The digital signature is 

computed using a set of rules (i.e., the DSA) and a set of parameters such that the 

identity of the signatory and integrity of the data can be verified. The DSA provides the 

capability to generate and verify signatures. Signature generation makes use of a 
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private key to generate a digital signature, while signature verification makes use of a 

public key which corresponds to, but is not the same as, the private key. Each user 

possesses a private and public key pair and the public keys are assumed to be known 

to the public in general. Private keys are never shared and it is known to the owner only. 

Anyone can verify the signature of a user by employing that user's public key, while 

signature generation can be performed only by the possessor of the user's private key.  

The European Community Directive on electronic signatures refers to the concept 

of an electronic signature as (27): 

Data in electronic form attached to, or logically connected with, other 

electronic data and which serves as a method of authentication. 

The European Community Directive on electronic signatures also refers to the 

concept of an advanced electronic signature as an electronic signature that is: 

1. Uniquely linked to the signatory 

2. Capable of identifying the signatory 

3. Created using means under the sole control of the signatory 

4. Linked to data to which it relates in such a way that subsequent a change in 

the data is detectable. 

DSA set up 

The DSA makes use of the following parameters: 
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1. p is a prime modulus. 

2. q is a prime divisor of p – 1. 

3. g = h(p-1)/q mod p, where h is any integer with 1 < h < p - 1 such that  

h(p-1)/q mod p > 1 (g has order q mod p) 

4. x is a randomly or pseudo-randomly generated integer with 0 < x < q 

5. Compute public key,  

y = gx mod p 

6. k = a randomly or pseudo-randomly generated integer with 0 < k < q  

The integers p, q, and g can be public and can be common to a group of users. A 

user's private and public keys are x and y, respectively. Parameters x and k are used for 

signature generation only, and must be kept secret while parameter k must be 

regenerated for each signature. 

Signing with DSA 

To sign message m, the following steps are involved: 

1. Hash message m to give h(m); 1 ≤ h(m) ≤ q-1 

2. Generate random secret k; 1 ≤ k ≤ q-1 

3. Compute  r = (gk mod p) mod q  

4. Compute  k-1 mod q 

5. Compute  s = k-1{h(m) + xr} mod q 

6. Signature on message, m is (r,s) 
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7. The signed message is {m, (r,s)} 

Note: h(m) is pronounced as hash of message, m and it is process whereby the 

message is reduced to a numerical value. 

DSA Signature Verification 

To verify that (r,s) is a signature for message, m: 

1. Check that 1 ≤ r ≤ q-1 and 1 ≤ s ≤ q-1 

2. Compute  w = s-1 mod q 

3. Compute u1 = wh(m) mod q and u2 = rw mod q 

4. Accept signature if  

gu1yu2 mod p) mod q = r 

Example: Let the parameters be p = 29, q = 7 with g = 16 

a) To Sign: 

1. Choose a random secret key, x = 3 (say) 

2. Compute public key,  y = gx = 163 = 7 mod 29 

3. Suppose the message to be signed gives h(m) = 5 

4. Generate a random k = 6 (say) 

5. Compute  r = (gk mod p) mod q = (166 mod 29) mod 7 

  = 20 mod 7 = 6. 

6. Compute  k-1 mod 7 = 6-1 mod 7 = 6 
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7. Compute  s = k-1{h(m) + xr} mod q = 6{5 + (3*6)} mod 7 = 5. 

b) To Verify: the verifier wishes to verify that (6,5) is the correct signature on message, 

m. 

1. Recover the public key, y = 7. 

2. Compute h(m) which we assume to be 5. 

3. We know that (r,s) = (6,5) 

4. Compute  s-1 mod q = 5-1 = 3 mod 7. 

5. Compute u1 = 3(5) = 1 mod 7 and u2 = 6(3) = 4 mod 7 

6. Compute  gu1yu2 mod p) mod q = ((161*74) mod 29) mod 7 

 = 20 mod 7 = 6 = r 

Thus, the signature is verified as r = 6. 

 

4.5 Chapter Summary 

The cryptographic algorithms for the selected public-key cryptosystems were 

discussed and implemented using the knowledge we gained in modular arithmetic in 

chapter 2. The algorithms considered are RSA, Diffie-Hellman, ElGamal and Digital 

Signature Algorithm (DSA). In RSA and ElGamal we discussed their algorithm set up, 

encryption, decryption and examples to demonstrate the practicability. In Diffie-Hellman, 

we covered the algorithm set up, and key exchange algorithm with practical example. 
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Finally, Digital Signature Algorithm was discussed with an illustration of the set up with 

signature signing and verification algorithms. This is equally followed by a practical 

demonstration of the use of the Digital Signature Standard. The next chapter will be 

devoted to conclusion and recommendations for future reading. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

Even though the cryptography has existed for thousands of years, its development 

was slow and unyielding and highly classified, and it was restricted to government use 

particularly the military.  The need to communicate secretly had never been 

considerably threatened until the invention of computers and high-tech machines.  In 

today’s society, one can discover all the secrets of another with the flick of one finger.  

The restriction on the practice, development and use of cryptography was however 

relaxed by governments due to the emergence of electronic commerce – this made it 

possible for companies and research institutions to invest in its development. There is 

no doubt why cryptography flourished during the twentieth century.  With the emergence 

of public-key cryptography, cryptography now incorporates mathematics as part of the 

shield for protection of privacy and as the world’s demand for secrecy increases, the 

need for cryptography and mathematics will continue to grow and progress. 

In this research work, we have identified a major area in number theory – modular 

mathematics that has contributed immensely to the development and study of public 

key cryptography. Cryptographic keys are the main drivers of public key cryptosystem 

and the generation of these keys – private and public keys is carried out by the 
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application of modular mathematics. We discussed modular mathematics and the 

relevant properties required for the understanding of the mathematics behind the public 

key generation algorithms and equally gave a brief history and developments that have 

taken place since the doors of cryptography was open to the public. A major deviation 

from the past has been the development of public key cryptography that was pioneered 

by the work of Diffie and Hellman known as Diffie-Hellman key exchange algorithm 

based on discrete logarithm. Other works that followed which we also covered are RSA, 

ElGamal, Digital Signature Algorithm based on ElGamal that forms the basis for the 

Digital Signature Standard (DSS) made by the US government. The area of increasing 

research in modern cryptography – elliptic curve and quantum cryptography were 

highlighted and we hope that interested readers would consult a good text on these 

subjects for further reading.  

We believe that our illustration and practical examples in the public and private key 

generation and usage for encryption and decryption or key exchange would be found 

interesting to those studying mathematics at undergraduate and graduate levels, and 

would further stimulate interest in those pure areas of mathematics.  
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5.1 Recommendations 

As we have mentioned in our last paragraph above, the current areas of increasing 

research in modern cryptography is elliptic curve and quantum cryptography. Elliptic 

curve is based on discrete logarithm that relies on the elliptic curve discrete logarithm 

problem for the security of online communication – this is a very different and currently 

much harder problem. We hope our studies here will stimulate interested readers and 

students to venture into the mathematical application and contribution of elliptic curves 

to the further development of secure electronic commerce, and online communication in 

general. 
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